Math and Architectures of Deep Learning
Engelstalig
Paperback
Nieuw vanaf 45,99
Koop Tweedehands
Niet tweedehands beschikbaar.
Koop NieuwWeb only
Centraal Magazijn
50,95
45,99
Levertijd: 6-9 werkdagen
Omschrijving
Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. YouGÇÖll peer inside the GÇ£black boxGÇ¥ to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications.
Math and Architectures of Deep Learning sets out the foundations of DL usefully and accessibly to working practitioners. Each chapter explores a new fundamental DL concept or architectural pattern, explaining the underpinning mathematics and demonstrating how they work in practice with well-annotated Python code. YouGÇÖll start with a primer of basic algebra, calculus, and statistics, working your way up to state-of-the-art DL paradigms taken from the latest research.
Learning mathematical foundations and neural network architecture can be challenging, but the payoff is big. YouGÇÖll be free from blind reliance on pre-packaged DL models and able to build, customize, and re-architect for your specific needs. And when things go wrong, youGÇÖll be glad you can quickly identify and fix problems.
Specificaties
- Auteur:
-
Uitgever:Manning Publications
- ISBN:9781617296482
- Bindwijze:Paperback
- Aantal Pagina's:450
- Taal:Engelstalig
- Druk:1e
- Publicatiedatum:Maart 2024
-
Rubriek:
Recensies
Recensies van onze lezers
Beoordeel dit boek als eerste!
Om een recensie te schrijven moet je zijn.